
ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 548

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

CALCULATING COHESION AND COPLING

METRICES FOR OBJECT ORIENTED

SYSTEM
Pooja Kumawat

E-Mail Id:poojakumawat.mit@gmail.com

Department of Computer Science and Engineering, SDBCE, Indore, Madhya Pradesh (India)

Abstract-In software engineering modularization is way to divide software project in to multiple independent and

discrete modules. After complete module conquers make as software. Means modules design use divide and conquer

rule. Cohesion and Coupling measure the quality of design of modules and interaction between modules. In this

paper studies have been done to identify complexity between inheritance and interface by applying the cohesion and

coupling metrics.Two program of c# implementing one with inheritance and other with interface are taken and

measurement is done. The metrics value obtained is compared to prove which concept is good and beneficial for c#

developer to use.

Keywords- cohesion, coupling, modularization, inheritance, interface

1. INTRODUCTION

When a software system program is modularized, its tasks area unit divided into many modules supported some

characteristics. As we know, modules area unit set of directions place along so as to attain some tasks. They are

although, thought-about as single entity however could confer with one another to figure along. There area unit

measures by that the standard of a style of modules and their interaction among them is often measured. These

measures area unit known as coupling and cohesion.

Cohesion is a very important attribute similar to the standard of the abstraction captured by the category into

account. Sensible abstractions generally exhibit high cohesion. Cohesion refers to the degree of the relationships

among the members during a category. A category is cohesive once its members area unit extremely related .A

extremely cohesive module is one whose components have a detailed relationship among them so as to supply the

only real practicality of the module. On the contrary, a coffee cohesive module has some components that have very

little relation with others, that indicates that the module appears to supply many unrelated functionalities.

It is extensively accepted that the upper the cohesion of a module is, the simpler the module is to develop, maintain,

and reuse, and therefore the less fault prone it's. it's a very important object-oriented software system quality

attribute. The degree of sophistication cohesion offers a sign for the standard of sophistication style. In object-

oriented paradigm, the category cohesion are often thought because the mensuration of connection among the

members of sophistication. Metrics area unit suggests that for attaining a lot of correct estimations of project

milestones, and developing a computer code that contains stripped-down faults. it's wide received that object bound

development needs a unique manner of thinking than ancient structured development and software system comes

area unit shifting to object bound code. Object bound metrics to measure properties of object bound Code.

1.1Cohesion

Cohesion may be a live that defines the degree of intra-dependability inside components of a module. The bigger the

cohesion, the higher is that the program style.in below figure 1 describe how to determine cohesion module.

Fig. 1.1 Determine Cohesion Modules

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 549

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

1.1.1 Coincidental Cohesion

Its unplanned and random cohesion, which could be the results of breaking the program into smaller modules for the

sake of modularization. as a result of it's unplanned, it's going to serve confusion to the programmers and is usually

not accepted.

1.1.2 Logical Cohesion

Once logically classified components area unit place along into a module, it's known as logical cohesion.

1.1.3 Temporal Cohesion

Once components of module area unit organized such they're processed at the same purpose in time, it's known as

temporal cohesion.

1.1.4 Procedural Cohesion

Once components of module area unit classified along, that area unit dead consecutive so as to perform a task, it's

known as procedural cohesion.

1.1.5 Communicative Cohesion

Once components of module area unit classified along, that area unit dead consecutive and work on same

information (information), it's known as communicative cohesion.

1.1.6 Successive Cohesion

Once components of module area unit classified as a result of the output of one part is input to a different and then

on, it's known as successive cohesion.

1.1.7 Practical Cohesion

It's thought-about to be the best degree of cohesion, and it's extremely expected. Components of module in

practical cohesion area unit classified as a result of all of them contributes to one well defined perform. It can even

be reused.

Fig. 1.2 Type of Cohesion and its Importance

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 550

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

1.2 Coupling

Coupling may be a live that defines the amount of inter-dependability among modules of a program. It tells at what

level the modules interfere and act with one another. The lower the coupling, the higher the program.

Fig. 1.3 Types of Coupling and its Importance

1.2.1 Content Coupling

Once a module will directly access or modify or confer with the content of another module, it's known as content

level coupling.

1.2.2 Common Coupling

Once multiple modules have scan and write access to some international information, it's known as common or

international coupling.

1.2.3 Control Coupling

Two modules area unit known as control-coupled if one among them decides the perform of the opposite module or

changes its flow of execution.

1.2.4 Stamp Coupling

Once multiple modules share common system and work on completely different a part of it, it's known as stamp

coupling.

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 551

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

1.2.5 Information Coupling

Data coupling is once two modules act with one another by suggests that of passing information (as parameter). If a

module passes system as parameter, then the receiving module ought to use all its elements.

2. LITERATURE REVIEW

The concept of an interface in object-oriented programming is quite old. Software engineering has been using

interfaces for more than 25 years. Many metrics are available to measure class, method, inheritance, polymorphism

and system level. There is no significant work on the code of human computer interfaces. In literature, relatively

little information has been published on interface metrics. Those metrics provide only little information about the

quality and usability of the interfaces. Sue of interface leads to the high cohesion and make the code more reusable.

In Year -2010, V. Krishnapriya and Dr. K. Ramarhave measured interface concept by using coupling metrics on

design based and have proved interface is more effective in use then inheritance to increase reusability of a code in

object oriented programming [1]. In this paper, measurement of inheritance and interface is calculated using

cohesion metrics using a example and prove the usage of interface increased the reusability James m. Bieman and

byungkyookang published a Paper on Cohesion and reuse in object oriented system explaining the TCC and LCC on

C++ Program [4].

2.1 What is Cohesion Metric and how will it be Measured

There are many metrics to find class cohesion but no standard metric or definition has been generally accepted, out

of available [Fenton &Pfleeger 1998], [Counsell et al. 2002] and [Etzkorn et al. 2004]. A reasonable metric to

measure class cohesion should give an insight to the relatedness among the methods of a class while considering the

impacts of inheritance paradigm on local class cohesion.

2.2 What is the Coupling Metric and how will it be Measured

Like class cohesion, there is no standard metric or definition for class coupling [Fenton &Pfleeger 1998]. However,

In OO design class coupling is a measurement of class dependence on other classes.We will attempt to measure a

class coupling on the basis of UML relationships.

2.3 What are the possible relationships, which may Exist between Cohesion and Coupling Metric

Metrics for measuring class cohesion and class coupling are supposed to share same input data for their respective

measurements. By the same set of input data we mean class member attributes, member methods, and usage of

attributes by the methods. We will attempt to find mutual relationships between class cohesion and class coupling

metrics by analyzing the results of experiment statistically.

2.4 How to Calculate Cohesion and Coupling Matrices During Software Evolution in Object Oriented

Literature on the subject of the software evolution clearly introduces the erosive trends in the software architecture

while meeting the changes imposed by the software evolution. In this thesis, we will attempt to identify such erosive

trends with the help of class cohesion and coupling metrics. Based on the literature review, we suppose that both

class cohesion and coupling should follow deteriorating trends while evolution in the software architecture.

3. COHESION AND COUPLING METRICES IN OBJECT ORIENTED SYSTEM

Cohesion is the degree to which methods within a class are related to one another and work together to provide well-

bounded behavior. Effective object oriented designs maximize cohesion because cohesion promotes encapsulation.

Coupling is a measure of the strength of association established by a connection from one entity to another. Classes

are coupled when a message is passed between objects; when methods declared in one class use methods or

attributes of another class. Inheritance is the hierarchical relationship among classes that enables programmers to

reuse previously defined objects including variables and operators.

3.1 Measure Cohesion for Class Using Inheritances and Interfaces

Inheritance is one of the fundamental concepts of Object Orientated programming, in which a class ”gains” all of the

attributes and operations of the class it inherits from, and can override some of them, as well as add more attributes

and operations of its own. In Object Oriented Programming, inheritance is a way to compartmentalize and reuse

code by creating collections of attributes, thing and behaviors called objects that can be based on previously created

objects.

Lack of Cohesion in Methods (LCOM) as the number of pairs of methods operating on disjoint sets of instance

variables, reduced by the number of method pairs acting on at least one shared instance variable.

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 552

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

Fig. 3.1 Implementation Using Inheritance Fig. 3.2Implementation Using Interface
Class P is represented using C(P) and public method and attributes ate represented using M(P) and A(P).Any class is

show that

C(A)=M(A)U A(P);

We are measuring the cohesion in the given program therefore considering the classes in short name

 Shape S

Implementation Using Inheritance:
using System;

classShape{

publicvoid Draw();
publicvoid Element();

}

classRegularPolygon:Shape
{

publicint Linesegment;

publicvoid Perimeter();
}

classEllipse: Shape{

publicint curved;
publicint Surface;

}

classTriangle : RegularPolygon
{

publicint sumofangles = 180;

publicvoid setsides();
publicvoid Area();

}

classRectangle : RegularPolygon
{

publicint sumofangles = 360;

publicvoid setsides();
publicvoid Area();

}

class Circle : Ellipse
{

 public int symmetrical;

 publicvoid Circumference();

}

classSalene : Triangle

{

publicint Nosidesequal;

}

classIsosceles : Triangle

{

publicint sideequal2;

publicint Anglesequal2;

}

classEquilateral : Triangle{

publicint sidesequal3;

publicint Anglesequal3;

}

classSquare : Rectangle

{

publicint oppositesidequal;

publicint angles4;
}

Implementation Using Interface:
using System;

interfaceShape

{

publicvoid Draw_Element();

}

interfaceRegularPolygon{

publicvoid Linesegment();

publicvoid Perimeter();

}

interfaceEllipse

{

publicvoid Circumference();

}

classTriangle : Shape

{

int Sumofangles = 180;

publicvoid Draw_Element();

publicvoid setsides();

publicvoid Area();

}

classRectangle : RegularPolygon

{

int sumofangles = 360;

publicvoid Perimeter();

publicvoid Linessegment();

publicvoid setsides();

publicvoid Area();

}

classCircle : Ellipse

{

int symmetricalpictur;

publicvoid Circumference();

}

classScalene : Triangle

{

int notequalsides;

}

classIsosceles : Triangle

{

int sidesequal;

int angleequal;

}

classEquilateral : Triangle{

int sidesequal;

int angleequal;

}

classsquare : Rectangle{

int opposite;

int sidesequal;

int anglesequal;

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 553

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

 Regular Polygon Rp

 Ellipse E

 Triangle T

 Rectangle R

 Circle C

 Selene Se

 Isosceles Is

 Equilateral Eq

 Square Sq

LCOM1 =|P|-|Q| …………….(II)

Where P=No of pairs in Disjoint Set

 Q=No of Pairs in Joint Set

Table-3.1 Calculation of Classes in Disjoint Sets (Using Inheritance)

<S,T>,<S,R>,<S,C>,<S,Se>,<S,Is>,<S,Eq>,<S,Sq> 7

<Rp,E>,<Rp,C>,<Rp,Se>,<Rp,Is>,<Rp,Eq>,<Rp,Sq> 6

<E,T>,<E,R>,<E,Se>,<E,Is>,<E,Eq>,<E,Sq> 6

<T,R>,<T,C>,<T,Sq> 3

<R,C>,<R,Se>,<R,Is>,<REq> 4

<C,Se>,<C,Is>,<C,Eq>,<CSq> 4

<Se,Is>,<Se,Eq>,<Se,Sq> 3

<Is,Eq>,<Is,Sq> ,<Eq,Sq> 3

Total no of pairs in P is= 36

Table-3.2 Calculation of Classes in Joint Sets (Using Inheritance)

<S,Rp>,<S,E>,<Rp,T>,<Rp,R>,<E,C>,<T,Se>,<T,Is>,<T,Eq>,<R,Sq> 9

Q= 9

LCOM1=|9|-|36|= -27

Formula of LCOM2 =| [4|p| - n(n-1)] /2 |
+

Where the

P=No of Pairs in Disjoint set

Q=No of classes are: n=10

Then LCOM2 is =| [4|36|-10*9]/2 | =

|54/2|= 27

LCOM2=27

Conventions : We are measuring the cohesion in the given program therefore considering the classes in short name

 Triangle T

 Rectangle R

 Circle C

 Scalene Sc

 Isosceles Is

 Equilateral Eq

 Square Sq

LCOM1 =|Q|-|P|

Where P=No of pairs in Disjoint Set

Q=No of Pairs in Joint Set

ISSN No.: 2454- 2024 (online)

International Journal of Technical Research & Science

pg. 554

www.ijtrs.com

www.ijtrs.org

Paper Id: IJTRS-V2-I9-007 Volume 2 Issue IX, September 2017

@2017, IJTRS All Right Reserved

Table-3.3 Calculation of Classes in Disjoint Sets (Using Interface)

<T,R>,<T,C>,<T,Sq>, 3

<R,C>,<R,Sc>,<R,Is>,<R,Eq> 4

<C,Sc>,<C,Is>,<C,Eq>,<C,Sq> 4

<Sc,Is>,<Sc,Eq><Sc,Sq> 3

<Is,Eq>,<Is,Sq> 2

<Eq,Sq> 1

Total no of pairs in P is= 17

Table-3.4 Calculation of Classes in Disjoint Sets (Using Interface)

<T,Sc>,<T,I>,<T,Eq>,<R,Sq> 4

Q= 4

LCOM1=|4|-|17|= -13

Formula of LCOM2 =| [4|p| - n(n-1)] /2 |
+

Where the „P‟: No of Pairs in Disjoint set

No of classes are : n=7

3.2measure Coupling for Class Using Inheritance and Interface

Coupling of a class means the measurement of the interdependency of class with other class‟s.A class as a parameter

in one of its member methods.

CONCLUSION

The purpose of this thesis is to finding the approach and way to identify complexity between inheritance and

interface programming through cohesion metrics in object oriented programs. Metrics measure certain properties of

software system by mapping them to numbers (or to other symbols) according to well-defined, objective

measurement rules. Code Metrics are measurements of the static state of the project‟s Code and also used for

assessing the size and in some cases the quality and complexity of software. Analysis and maintenance of Object-

Oriented (OO) software is expensive and difficult. Thus, measuring the relationships has become a prerequisite to

develop efficient techniques for analysis and maintenance. Various cohesion metrics have been proposed and used

in past empirical investigations; however none of these have taken the run-time properties of a program into

account. As program behavior is a function of its operational environment as well as the complexity of the source

code, static metrics may fail to quantify all the underlying dimensions of coupling and cohesion. In our future work,

We can apply various other cohesion metrics to identify better complexity between inheritance and interface

programming.

REFERENCES

[1] V. Krishnapriya, K. Ramar, "Exploring the Difference Between Object Oriented Class Inheritance and

Interfaces Using Coupling Measures," ace, pp.207-211, 2010 International Conference on Advances in

Computer Engineering, 2010.

[2] K.K. Aggarwal, Yogesh Singh, ArvinderKaur, Ruchika Malhotra. “Empirical Study of Object- Oriented

Metrics”,2006.

[3] Martin Hitz, Behzad Montazeri. “Measuring Coupling and Cohesion. In Object-Oriented Systems” in

Angewandte Informatik (1995).

[4] James M. Bieman and Byung-kyookang.“Cohesion and Reuse in Object Oriented System” Department of

Computer Science, Colorado State University Fort Collins, Colorado,1995.

[5] Shyam R. Chidamberand Chris F. Kemerer” A Metrics Suite For object Oriented Design” IEEE Transactions

on software Engineering, Vol. 20, No. 6, June 1994.

[6] Krishnaprasad Thirunarayan.”Inheritance in Programming Languages” Department of Computer Science and

Engineering, Wright State University, Dayton, OH-45435.

